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Molecular orbitals are expanded in spherical harmonics functions around 
atomic centers. The expansion coefficient is a function of the distance from 
the nucleus and the quotient between this function and a corresponding atomic 
orbital is almost constant in the core region. The square of  the quotient is 
used as a definition of an atomic charge component.  The erratic dependence 
on the type of  basis functions in the Mulliken method is thereby avoided. 
The relationship between the new charge and the Mulliken population is 
investigated and a new invariant Mulliken population is suggested. 
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I. Introduction 

Molecular orbitals (MO), the elements of  the quantum mechanical description 
of molecular electronic structure, are complicated mathematical  functions of  a 
three-dimensional variable. To be able to overview their extension in space they 
may be analysed in atomic components.  In the Mulliken analysis the squares of  
the expansion coefficients of  the orbital basis functions is used to define an atomic 
charge [1-4]. Originally, this was applied for the simple LCAO case when each 
basis function corresponds to an atomic orbital [1, 2]. I f  the method is extended 
to the case of  many atomic radial functions on each center for each atomic orbital, 
the well-known difficulties of  the Mulliken analysis begin to appear.  Some basis 
functions on different centers will have a large overlap. I f  they are orthogonalized 
the new functions will be centered on many nuclei and the expansion coefficient 
squared then loses its meaning of an atomic charge component.  Another problem, 
closely related to the first one, is that the basis may become complete, in principle, 
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by expanding on just one center, in which case the Mulliken analysis would refer 
all electrons to this center. A many-center expansion is more practical, of  course, 
since one may obtain reasonable results in a small expansion. Improving on a 
many-center expansion, on the other hand, quickly leads to overcompleteness 
problems with increasing arbitrariness in the expansion coefficients. 

As a consequence of the mentioned problems, for some molecules there exist a 
number of accurate calculations with rather different Mulliken populations. The 
actual differences in the wave functions for given points in space are usually 
much smaller. The problem is not in the calculation of the wave function but in 
the interpretation of the calculation. One way to proceed would be to list the 
wave function in given points or to interpret it in terms of expectation values. 
Another way is to use integrated charges, but a difficulty is then to define a 
suitable region for the integration. A very elegant way of discussing the topo- 
graphical features of the charge density has been worked out by Bader and 
co-workers [5]. 

There are actually a number of ways of defining atomic charges in a basis set 
independent way, but unfortunately they are not in common use [6-10]. The 
approach followed here makes use of the spherical harmonics expansion of  the MO 
around atomic centers [ 11-19]. 

o o  1 

~bi(r)= ~ ~ Czm(r) Ytm(l)) (1) 
1 = 0  m = - - I  

If an MO is expressed in terms of Gaussians, each Gaussian u~ = exp (-c~r~) 
centered at a point A with spherical coordinates (RA, OA, 4~A) gives a contribution 
CI~, ) to Ctm defined by [19]: 

Cl~,)(r) = [4zr exp (-aR2a)Y*,,(OA, cba)]i~(2aRar) (2) 

where it are modified spherical Bessel functions of the first kind. 

The functions Clm (r) referring to an MO expressed in Gaussians or any other 
basis set are usually proportional to the orbitals of the neutral atom in the core 
region [11, 12]. For instance the singly occupied orbital in linear CuF2, which is 
an o-~ orbital has Coo(r), C2o(r), C4o(r), etc. as the only non-zero expansion 
"coefficients". Coo(r) has the same nodal structure as the Cu4s orbital and the 
ratio Coo(r)/Ras (r) is almost constant in the core region (except in a region close 
to the nodes). The same applies to C2o(r) and R3d (r). This feature of  molecular 
orbitals may be used to define atomic charges in molecules [11, 12]. 

Due to the erratic behavior of the charges obtained by applying the Mulliken 
method to ab initio wave functions, quantum chemical methods are in some 
disrepute in connection with "charges". This is unnecessary since basis set 
independent methods can be used. It must be realized, of course, that different 
definitions lead to different "charges". Experimentally, atomic charges and spin 
distributions may be obtained in for example ESCA [20-23], NMR, ESR, NQR 
or M6ssbauer spectra. In the first two the shift is measured by an operator which 
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behaves like 1 / r  in the core region outside the ionized shell. In the others, except 
the last one the r-dependence of the relevant operator is 1 / r  3 and in the last one 
the charge density at the nucleus is measured. In all cases the region close to the 
nucleus is heavily weighted. Consequently, a charge (or spin) definition which, 
like the one used in this paper, is based on the behavior of the valence orbitals 
in this region will be in good agreement with these measured charges or spins. 

2. Theory 

In the core region, the orbital shape of MO 05i is determined essentially by the 
kinetic energy and nuclear attraction terms and Coulomb repulsions from the 
electrons "inside" the orbital under study. All these terms are very similar in the 
atom and the molecule. One may therefore expect that the molecular orbital 
component CI~(r)  and its corresponding atomic orbital O~lm have a nearly constant 
ratio in the core region. 

The contribution from ~bi to the charge component q~m at the atom center A is 
defined as: 

q(thi, A, I, m)=[ l im  C~(r)/alm(r)] 2 (3) 
r -~0  

where r is radius vector at A. 

Several other definitions are possible as for instance [ drdO 12 

q(qbi, A,l,m)= l~mf?fa,~,m(r)a,m(r)r2drdO] (4) 

which leads to the same result as Eq. (3). If  r 2 dr is replaced by to(r)r  2 dr in 
Eq. (4) and to (r) is an operator which strongly weighs the nuclear region (as for 
instance 1/r 3) the charge may be defined as: 

c~*m (r)~bi(r)to(r)r 2 drdf t  

q(~b~, A, l, m) . . . . . . . . .  (5) 

[ f o  fn a*~m(r)a'm(r)w(r)r2 drd" 

and will then be almost the same as in Eq. (4). Equation (5) is useful if ~bi has 
an erratic behavior very close to the nucleus, which is often the case with Gaussian 
orbitals. 

For R ~ ~ in Eq. (4) we obtain: 

n(q~i, A, l, m) = a*m(r)4~i(r)r 2 drdf t  (6) 

which is identical to the Davidson definition of the contribution of q~ to the 
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Fig. 1. Molecular orbital ~b plotted along an interatomic axis, component C~m and corresponding 
r r 2 atomic orbital atm. The dashed line is the quotient ~0 ~a~ ~aa~,,,. q is the charge defined in 

this paper [Eq. (3)] and D the corresponding number of Ref. [6] 

occupation number  of  the atomic orbital aim [6]: 

n(gai, A, l, m) = (~b/latin) 2 (7) 

The difference between our definitions Eqs. (3)-(5), and the one of Davidson is 
clarified in Fig. 1. For a bonding orbital, we should have 

n(6,, A, l, m) > q(6,, A, l, m) (8) 

and the other way around for an antibonding orbital. 

The charge used here, as well as the Davidson occupation number,  has the 
property that it converges to a definite result as the wave function is improved. 
None of these two definitions has the property that all atomic components  of  a 
given orbital sum to unity. In both cases we are moreover missing the concept 
of  "overlap charge" which has been found useful in the MuUiken definition. We 
will now show that an "overlap charge" may be obtained by comparing the 
Davidson approach to the one presented here. 

Let us assume that the normalized molecular orbital ~b~ may be written as a linear 
combination of  atomic orbitals XA and X8 centered on A and B, respectively: 

~)i = I~AXA + I~BXB (9) 
We may assume that ABXn is small on center A[),nXB (A)<< AAXA(A)]. We then 
obtain: 

q(th,, A) = A~ (10) 

where indices l, m have been discarded. This is identical to the Mulliken net 
population P(~b~, A). The Davidson occupation of XA is: 

n(6i, A)  = (XAI 6 i )  2 = A2A W 2AAAn(XAIXn) + A2(XAIXn) 2 (11) 
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Fig. 2. Mulliken net populations (M) and Davidson occupa- 
tions for bonding (+) and antibonding (-) orbital of Eq. (9). 
AA=AB. See text for explanation of dashed area 
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The third term is small if either AB or the overlap is small. The second term is 
the Mulliken overlap charge. On the basis of  Eq. (11) it would be reasonable to 
interpret the difference between the charge component  q(i, A) and the Davidson 
occupation n(i, A) as an overlap charge. This is shown in Fig. 2. The overlap 
charge for a bonding orbital corresponds to the hatched area. I f  terms to second 
order in S are neglected, the Davidson occupation is equal to the sum of the 
Mulliken net populat ion and the overlap population. For corresponding antibond- 
ing orbital the Davidson occupation is equal to the Mulliken net population 
minus the overlap population. Since S is usually smaller than 0.3, the suggested 
overlap definition would be reasonable and we would then have "invariant"  
definitions of  overlap as well as charge. However,  we have neglected some terms 
which at least in some cases make q(i, A) very different from P(i, A). 

The charge components  q(i, A, l, m) defined by Eq. (3) also contain a contribution 
arising from orthogonality to inner shells as well as AsXB (A) which was neglected 
above. To see this we write a valence orbital as: 

~b~ = (1 -IS~A X ~:A]- IsCs X S~Z])(AAXA + AsXB) (12) 

where ~:A and ~B are core atomic orbitals on A and B, respectively (for simplicity 
we assume only one such function on each atom). The core functions, ~A and 
~B, are orthogonal to XA and XB, respectively, and it may also be assumed that 
s~s(A) = 0. We obtain 

q(i, A) = [AA +/z(i ,  A)] 2 (13) 

where 

/.t (i, A) = AB[xs(A) - ~A(A)(~AIXB)]/XA(A) (14) 

The new correction term due to the core orbital ~:A is often larger than xB(A). 
For Li2 ~:A(Sr 8 " xB(A). Clearly /x is an important correction term in all 



296 S. Larsson and M. Braga 

methods which only include the valence orbitals particularly in calculations of 
isomer shifts. 

We also obtain from Eqs. (13) and (14): 

(~)IIXA) ~" t~A "[- }[B(/~B [Xa) -- hA(~B [Xa) 2 (15) 

In most cases the third term can be ignored and we then obtain no correction of 
the Davidson occupation compared to Eq. (11). The Mulliken net population on 
A due to ~b~ is: 

P(i, A) = A~+ A~(SCAIxB) 2 (16) 

Again the correction may be ignored compared to A~. 

In the case of  large basis sets, q(i, A) is calculated from Eqs. (3), (4) or (5). The 
atomic orbital should be expanded in the same atomic basis set as is used in the 
molecular calculation. One may then hope for some error cancellation. The 
important thing is that q(i, A) is an invariant quantity, independent of  the basis 
set once the latter is complete. This is not so for the Mulliken population. An 
invariant Mulliken net population, however, may be defined on the basis of Eqs. 
(13) and (14): 

P(i, A) = [x/q(/, A ) -  #z(i, A)] 2 (17) 

3. Examples 

3.1. H 2 

The occupied log orbital may be approximated as 

larg=(lsA+lSn)/'J~-+2S; S=(lSAIlSB) (18) 

where 

1 
lSA(r) = ~ exp (--r) (19) 

Using Eqs. (3), (10) and (11) we obtain: 

q(1 try, A, 0, 0) = [(1 + e - " ) / ~ ]  z (20) 

P(lo-g, A) = (2+ 2S) -1 

n(ltrg, 1Sa) = (1 + S)/2 

For R = ~ ,  q( lsa)  =0.5 and for R =0,  q( lsa)  = 1. The Mulliken net populations, 
P, are 0.5 for R = ~  and 0.25 • for R =0.  The Davidson occupations, n, of the 
orbital 1/X/-~ e -r are 0.5 for R = ~ and 1.0 for R = 0. All values given here refer 
to one electron. The total charges, populations and occupations are thus twice 
as large. At the equilibrium distance R = 1.4 ao, where S=0.753,  we obtain 
q(lsa) = 0.44, P(lSA) = 0.29 and n( lsa)  = 0.88. The difference q(lSA)-- P(lsA) 
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equal to 0.15 is due to the term ABXB(A), which is particularly large in the case 
of H2 with a short bonding distance and large overlap. The large overlap also 
leads to the large Davidson occupation, which overshoots the sum of Mulliken 
net and overlap population (0.29 + 0.42) by 0.17. 

The low value of q at the equilibrium distance is due to the inadequate wave 
function. An optimized basis set of van Duijneveld [25] (9s contracted to 3s and 
augmented by p functions) gives q(lSA)= 0.67 at the equilibrium distance. At 
R = 0 the correct value, obtained in a Hylleraas calculation for the He atom [26], 
is q(lSA) = 5.69. Apparently the simple LCAO basis, which gives q(lSA)= 1.0 is 
very inadequate for small interatomic distances. 

3.2. Li2 

Ab initio MO were calculated using the basis sets of Roos and Siegbahn [27] (7s 
contracted to 3s) and Huzinaga (9s, 4p) [28]. (Basis sets I and II, respectively.) 
The result is given in Table 1. We notice, as in the previous case of H2, that 
the charge component q(2~rg, A, 0, 0) is considerably larger than the invariant 
Mulliken net population. In this case, however, the main contribution to this 
difference is not A~xB(A). The latter term is small and contributes to a lowering 
of q(2Org, A, 0, 0). The major part is the term due to orthogonality between X~ 
and the ls orbital on A. It contributes to an increase of q(2~rg, A, 0, 0) by about 
a factor of two compared to P(2~rg, A). Obviously in this case the Mulliken net 
population would not even be close to any experimentally measurable quantity. 

The q(2o'g, A, 1, 0) charge, i.e. the 2pz component is very much increased when 
p functions are added to the basis set. In a good basis set the 2pz functions thus 
have to be included. On the other hand the 2p~ component is surprisingly small 
and indicates a very small amount of s - p  hybridization. The free atom 2p orbital 
is obtained from the 2p state of Li. Since the orbital is not a strongly bound one, 
one may expect that core region proportionality is not very well obeyed. 

Although well-known, it may be of interest to point out that the charge densities 
at the nucleus using Gaussian functions are rather bad. For the Li atom we obtain 
12.5 by the Roos-Siegbahn basis and 13.0 by the Huzinaga basis, whereas the 
accurate value is 13.81 (with correlation corrections 13.83) [29]. Accurate values 

Table 1. Charge components q, Mulliken net and gross popula- 
tions, P, and invariant Mulliken populations P'  for Li22o-g 
orbital. I refers to the basis set of [27] and II to the basis set 
of [28] 

AO Basis q Pnet Pg .... P'  

2s I 0.579 0.320 0.500 0.304 
2p I 0.002 - -  - -  a 
2s II 0.540 0.282 0.461 0.284 
2p II 0.051 0.012 0.039 a 

a not calculated 
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have been obtained for Li2 and LiH by Pyykk/5 et al. [30] and are 13.825 and 
13.790, respectively; both on the Hartree-Fock level. 

The invariant Mulliken population (P') are slightly different for the four basis 
sets. There is thus a real difference in the two wave functions. 

3.3. LiH 

Results for LiH using the Huzinaga basis set [28] are given in Table 2 and Fig. 
3. The most remarkable thing is that the density at the hydrogen nucleus is about 
the same in LiH as in the hydrogen atom [(a) and (b) are almost the same at 
the nucleus in Fig. 3]. The singly occupied ls  orbital of the hydrogen atom is 
larger by roughly x/2 than the doubly occupied 2or orbital of LiH at the hydrogen 
nucleus. The contribution from lo- is negligible. The accurate value for the charge 
density at the H nucleus obtained by Pyykk/5 et al. [30] is 0.374, thus slightly 
lower than our result. 

For the H nucleus as for the Li nucleus above, basis set errors for the charge 
density are generally larger than differences due to "environment".  It may be of 
interest to study also accurate values for H-.  As is seen in Fig. 3, the H-  

Table 2. Charge components and Mulliken net popula- 
tions for LiH 2~ orbital using basis sets of Huzinaga 
(Li) and van Duijneveld (H) [25, 28] 

AO q Pnet Pg .... P '  

Li2s 0.590 0.179 0.373 0.256 
Hls  0.516 0.433 0.627 0.460 

"/(c) 
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38 

.37 

.36 
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Fig. 3. Comparison of wave functions close to 
the hydrogen nucleus. (a) (dashed) Coo(r) 
for LiH using a gaussian basis set (see text); 
(b) (dashed) Hls  divided by ,f2 using the 
same basis set; (c) Hls  divided by x/2 [ 1 / 2 ~  
exp ( - r ) ] ;  (d) ls  orbital for H-  obtained by 
the Hartree-Fock method; (e) square-root of 
electronic density for H -  
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Hartree-Fock ls  orbital obtained in a very accurate Slater type basis set [26] is 
smaller than the Ht,  orbital, divided by ~/2, close to the nucleus. However, if 
correlation effects are included the density at the nucleus in H-  is somewhat 
larger (Fig. 3 and Ref. [26]). These results show, among other things, that it is 
impossible to tell whether LiH is closer to L i -  H or to Li + -  H-.  There is almost 
no difference in charge densities between H and H -  or Li + and Li close to the 
nucleus and far from the nuclei the charge density is deformed anyway due to 
MO formation. 

Also in the LiH case the Mulliken net population is much different from the 
charges q defined here, particularly at the Li nucleus where the ls-orthogonality 
term is large. Again we have a case when the Mulliken net population (Table 2) 
stands no chance in being in agreement with measured "charges". 

4. Discussion 

The charge components q~) are a measure of how the wave function starts out 
from each nucleus. It is a useful measure if the quotient is constant in most of 
the core region, and then the result of Eqs. (3), (4) and (5) agree very closely. 
The sum of  the charge components defined by Eqs. (3), (4) and (5) over the 
various nuclei will not add up to unity as is the case with the total Mulliken 
populations. The same problem appears if the charges are derived experimentally 
by measuring expectation values of core region weighted operators. In fact our 
method quite clearly reveals the dangers in the experimental determinations as 
well as in calculations using only valence orbitals. The latter tell only about the 
behavior at the nucleus and cannot be used for a global partitioning of the 
electron charge on atoms. The reason is that the orthogonality between the core 
orbital (a and the valence orbital (XB) on other centers. The problem is particularly 
important for isomer shifts since <~AIX,) is large in that case. 

It is quite obvious that the core orbitals look similar in the molecule as in the 
free atom. To which extent the similarity is valid for the valence orbitals depends 
on how strongly these orbitals are bound. Weakly bound orbitals are very different 
already in different electronic configurations of the atom. As an example one 
obtains large differences in the 2p orbitals for the Be atom in the ~P and 3p 
states. Consequently, it is impossible to define an atomic charge component with 
reference to these losely bound orbitals.. The full plot of the molecular component 
has to be given together with the different atomic orbitals. 

In our procedure we will thus arrive at an answer regarding the existence of  
atomic components of weakly bound orbitals in molecular orbitals, as for instance 
a sulphur 3d component in molecules containing sulphur atoms [31]. There will 
be a d-component  in those orbitals where it is allowed by symmetry, even if the 
basis set does not contain any d-functions. As in the case of  the p component 
in Li2 the S3d component will be larger and better described if d functions are 
included in the basis set. Only by calculations is it possible to decide whether 
this d-component  takes on a maximum in the region between the S nucleus and 
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its neighbors, and thereby resembles an atomic orbital. The next question is 
whether it resembles any atomic orbital for an excited state of  sulphur. If it does 
not, as is likely, one cannot ascribe a well-defined S3d charge to the orbital in 
question. 
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